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Introduction 

Spam messages are unwanted messages that are usually sent in large amounts to the recipients 

for some commercial purposes. It could be harmful to both corporations and individuals due to 

its potentially fraudulent nature in case of containing various scam, viruses, and unsolicited 

content. The main goal of this report is to analyze the problem of spam messages detection in 

mobile SMS text messages and to reveal the viability of Naïve Bayesian algorithm as a solution. 

 

     Problem Statement 

The number of spam message in the modern world is significantly growing each year which can 

result in potential cyber security breach, loss of time and resources. The task of spam messages 

detection is becoming of a paramount importance in the wake of growing amount of data 

transferred through the Internet or via the mobile phones. The constant inundation of 

unsolicited messages online has caused a disruption in the digital world and has made it 

difficult to identify genuine messages out from the commercial spam or malicious malware. 

Filtering the messages and protecting people from spam can considerably change the 

ecosystem of email correspondence and bring more integrity into the system. Thus, introducing 

an effective algorithm capable of dissecting and classifying spam and genuine SMS messages 

should help people and organizations to maintain their efficiency levels and stay protected 

from scam. 

 

Objectives 

 

• Introduce a Naïve Bayesian algorithm. 

• Illustrate the concept of processing plain text files using the tm_map() function in the 

“tm” package of R programming language. 

• Elaborate on the methodology of removing punctuations and stop words, performing 

stemming and changing cases. 

• Show the process of splitting messages into a document-to-term matrix. 

• Demonstrate visualization methods using word clouds. 

• Outline the steps taken in training and evaluating the model. 

• Offer recommendations on how the model can be improved.  

 

 

 

 



Methodology 

The methodology used in this report is based on the analysis of publicly available data set 

sms_spam.csv and a review of the existing literature: Brett Lantz, Machine Learning with R, 2nd 

Ed., Packet Publishing, 2015 (ISBN: 978-1-78439-390-8). The following report is split into the 

sections: 

• Step 1. Collecting data. 

• Step 2. Exploring and preparing the data 

• Step 3. Data preparation. Cleaning and standardizing. 

• Step 4. Data preparation. Splitting into words. 

• Step 5. Data preparation. Creating training and test datasets. 

• Step 6. Visualizing text data 

• Step 7. Data preparation. Creating indicator features. 

• Step 8. Training a model on the data 

• Step 9. Evaluating model performance 

• Step 10. Improving model performance 

 

Findings 

Naive Bayes is a probabilistic machine learning algorithm based on Bayes theorem, which states 

that the probability of a hypothesis given some observed evidence is proportional to the 

probability of the evidence given the hypothesis, multiplied by the prior probability of the 

hypothesis. In the case of spam detection, the hypothesis is whether an email/SMS message is 

spam or not, and the features might be the presence of certain keywords or phrases. The 

algorithm calculates the probability of the text being spam, given its features, and compares it 

to the probability of it being non-spam, to determine which hypothesis is more likely. Naive 

Bayes is a simple and fast algorithm, making it well-suited for large datasets and real-time 

applications. It also makes independence assumptions between features, which may not always 

hold, but often still works well in practice. The Naive Bayes algorithm is a useful tool for 

detecting spam messages due to its speed, simplicity and performance in text classification 

tasks and it was the main reason behind the rationale of choosing this algorithm for the project 

in question. 

 



 

Image 1. Pros and Cons of the Naïve Bayes Algorithm (Lantz, 2015) 

 

Step 1. Collecting data. 

The "sms_spam.csv" dataset is a publicly available dataset used in R for the task of SMS spam 

classification. It consists of a collection of SMS messages, labeled either as "spam" or "ham" 

(i.e., not spam). The dataset typically includes two columns, one for the label (spam or ham) 

and another for the message text. This dataset is widely, as it provides a simple and well-

structured set of data for building and evaluating models for SMS spam detection.  

 

Step 2. Exploring and preparing the data.  

To start building our classifier, we first need to prepare the raw data for analysis. This can be 

difficult because text data must be transformed into a format that a computer can understand. 

The transformation process we will use is called "bag-of-words," which represents the text data 

as variables indicating the presence or absence of specific words, without considering the order 

of the words. 

The CSV data was imported and saved in a data frame first. It was shown that a new data frame 

called data_raw consists of 5,559 SMS messages with two characteristics being type and text. 

The type features indicates whether a message is spam or ham and the text feature contains 

the full text of an SMS. 

 

As it is shown on the picture above, both of the elements were originally of a character type 

which is a categorical variable. In order to utilize it for the algorithm we had to convert it into a 



factor. By using a table() function we could see a breakdown of the messages in the data set 

with 747 of them being SMS messages and 4812 being ham messages accordingly: 

 

 

Step 3. Data preparation. Cleaning and standardizing. 

Usual SMS messages are congested with various characters such as numbers, words, 

punctuation, and spaces. For the purposes of the project, some of this data deems to be 

irrelevant thus removal of those was necessary. Punctuation, numbers, noise words and other 

elements could be removed with the help of tm package. The tm (Text Mining) package in R is a 

tool for text mining and natural language processing tasks. It provides a framework for 

managing and manipulating text data, including functions for loading, cleaning, transforming, 

and visualizing text data. 

At first, the corpus was created with the help of VCorpus() function, which represented a 

collection of text documents from the data set in use. It can contain any type of documents 

although in case of our project the corpus consisted of the SMS messages. There are two types 

of a Corpus being a Volatile and a Permanent one. The latter one could be utilized with the help 

of PCorpus() function to access a permanent corpus stored in a database. In this case a user 

need to specify the source of documents. In our case, VCorpus() was used since SMS text 

messages were already loaded in R and consequently VectorSource() function was applied to 

create a source object from the existing vector data_raw$text, which was provided later to 

VCorpus(). The object was saved as data_corpus and by looking at it, all documents for the 

5,559 SMS messages in the training data were stored in it. 

 

With the help of inspect() function, one can easily examine the summary of specific messages in 

the corpus. As an example, the summary of a third and fourth SMS messages stored in the 

corpus were shown: 



 

To illustrate an example of an actual text, the as.character() function can be utilized as shown 

below with one of the messages from the corpus. In order to see several documents at once, 

lapply() function could be utilized for all the elements of a data set. Subsetting is also shown 

below: 

 

The next step was using tm_map() function to transform(map) recently created corpus and 

carry out cleaning operations. The result was saved in a new corpus called corpus_clean. 

Cleaning consisted of various steps such as transforming upper case letters into lower case ones 

with the help of tolower()  and content_transformer() functions. The latter one was used in 

order to access the corpus for the transformational purposes. After each step a good practice 

was to inspect whether the desired outcome was achieved by comparing with the similar 

command performed earlier: 

  

After that, the numbers were also removed (with the removeNumbers() function) from the 

messages since most of them will not contribute to the algorithm and not help to define spam 

messages. The so-called stop words such as of, or, why, etc. were also removed by 

removeWords command for the same reason of not being beneficial for machine learning 

algorithm. Same as before, a tm_map() function was used to apply transformation to a clean 



corpus. Next, the punctuation was removed with removePunctuation() function. To simplify the 

work for the algorithm, we also applied a process called stemming (integrated in to the 

SnowBallC package). It allowed us to reduce the words in the text messages to its root forms so 

that it could be treated as single concept. The wordStem() function and stemDocument() 

transformation were utilized for the entire data set which returned the same data set with 

words in its base form. The final step in the cleaning transformation was to remove the 

whitespace with the help of stripWhitespace() transformation.  

 

 

As the result of the cleaning transformation the following examples were illustrated for the 

comparison purposes. As it is shown, the message was reduced to the most important data 

with punctuation and capital letters having been removed: 

 

 

 

Step 4. Data preparation. Splitting into words. 

The final step in the preparation stage was to perform tokenization which stands for splitting 

the messages into individual units – words. With the help of DocumentTermMatrix() function, a 

corpus information was used to create a Document Term Matrix (DTM) where rows contain 

documents (SMS messages) and columns contained terms (words). By looking into the DTM we 

could conclude how many times each word was mentioned in the data set. Although lots of 

cells in the DTM could represent 0 which means some of the words do not appear in certain 

messages. There are several ways of approaching the processing part of a tokenized corpus: 

default or manual. Considering the pre-processing stages described earlier, default settings 

were deemed to be enough for this project. Although the pre-processing may look the same for 

manual and default approaches, there might be some discrepancies caused by the ordering of 

the steps. In our case, the order worked well and showed a considerably appropriate number of 

terms in the matrix (42147). However, should a more specific approach in processing be 



required, one need to reconsider the order if necessary. 

 

 

Step 5. Data preparation. Creating training and test datasets. 

At this point, the data was prepared for the analysis so the next step was splitting the data into 

training and test datasets. In order to maintain the integrity of the algorithm the entire 

preparation was done before this step so that training and test data sets would be identical in 

its nature. Train data set is required for the algorithm to be trained and test one is needed for 

evaluating the performance of the algorithm on a new data. The data was split into 75% 

allocated for train data set and remaining 25% for the test one. The text messages within the 

DTM are stored randomly so the first 4,169 numbers were selected for the training and rest 

1,390 were left for testing. Just like with data frames, specific rows and columns were 

mentioned in the code for each of the sets. In order to save vectors with labels for each of the 

matrices, it was extracted from the original data_raw data frame. As it was done previous, we 

confirmed the subsets were representing the complete set of SMS data by looking at 

proportion of spam in both of the data frames: 

 

As shown in the picture above, bot of the data sets contain about the same amount of spam 

(roughly 13% each) indicating the messages were split evenly. 

 

Step 6. Visualizing text data. 

A word cloud, also known as a tag cloud, is a visual representation of the frequency of words in 

a text corpus. In R, the wordcloud package can be used to create a word cloud. Once the word 



cloud is created, it provides a quick visual representation of the most frequently occurring 

words in the text data, which can be useful for text analysis and information extraction. The 

words that appear more frequently are illustrated in a larger font with less popular words being 

in a smaller font respectively. The words are distributed randomly around the cloud figure 

unless other is specified. In the project, a nonrandom representation was selected to indicate 

the most frequent words in the center of the cloud. Frequency was set at the level of 50 which 

means any given word must be mentioned at least 50 times within the corpus in order to be 

included into the cloud. 

  

Another more helpful approach to compare different subsets of words using visualization can 

be performed by splitting spam and ham messages to see a distinct difference between them. 

Using data_raw vector and subset() function we created spam and ham susbsets with 

appropriate types of the messages. Using max.words and scale options we adjusted the 

parameters and selected the 40 most common words in both data frames and set a scale as the 

following: 

  

 

Here is the result with two word clouds illustrated for the comparison: 



 

By looking at the above pictures, it can be deduced that spam word cloud is on the left with the 

words like call, free, txt, prize, etc. On the right side we can see conventional words like know, 

call, good, etc. This visualization can clearly indicate the difference between the messages and 

illustrate how often a given word is used in a data set. 

 

Step 7. Data preparation. Creating indicator features. 

Before proceeding to the training part of the algorithm, the final preparation step had to be 

applied. Some of the features in the 6,500-rich matrix would not have been helpful for 

classification purposes thus only those used in more than five SMS messages were selected. It 

contributed to 0.1 percent of the data and this parameter could be changed depending on the 

project requirements. The findFreqTerms() function was used to sort the words and remove 

those that were rarely used. A new character vector called data_freq_qords was created 

accordingly and after inspecting the vector there were 1139 terms contained in it. After looking 

at the structure of the vector, with some of the terms, certain symbols were noticed in the 

beginning of the words. Those were considered redundant thus further cleaning was applied 

with the help of gsub() function: 

 

Next, another refinement of the DTM was required by selecting only the terms that are in a 

specified vector. Common data frame [row, col] operations were used, similar to previous 



operations, to select specific parts of the DTM. The columns were labeled with the words the 

DTM holds. By doing this, we could restrict the DTM to specific words. We had to select all the 

rows and specify only the columns represented in the data_freq_words after which both of our 

data sets, training and test ones included 1,136 features that were at least used five times in 

the messages.  

As it was mentioned in the very beginning of the project, Naïve Bayes  classifier is usually 

operating with categorical features and the sparse matrix we created was using numeric ones. 

The solution for this discrepancy was found in creating a convert_counts() function that 

enabled to check the words and mark those with Yes or No in case the word appeared in the 

messages. 

 

This was a simple function checking the values in x whether it was greater than 0 and replacing 

it with Yes or No respectively, after which returning a new vector. Further, this function was 

applied with the help of another useful apply() function to the columns of the sparse matrix. 

Considering the fact that only columns were required transformation, MARGIN = 2 feature was 

applied.  

 

As the result we obtained two matrixes with characters indicating positive or negative outcome 

in case the word shown by the column appeared in the message shown by the row. 

Step 8. Training a model on the data. 

Since at this point we adjusted the SMS messages format into the one that could be utilized by 

the Naïve Bayes algorithm, the latter one used the information about the presence/absence of 

the words to evaluate the probability of any given message being a spam. The Naïve Bayes 

algorithm could be used after installing e1071 or klaR paclage. In this project the first one was 

implemented. The procedure for using the algorithm can be seen on the following image: 



 

Image 2. Naïve Bayes classification syntax. (Lantz, 2015) 

 

To follow the procedure, a new object called data_classifier was created containing Naïve Bayes 

classifier necessary for prediction purposes. 

 

 

Step 9. Evaluating model performance. 

Now since the data_classifier was successfully built we used to test its predictions on the test 

data which it didn’t see earlier. Data_test object still holds the unseen data while 

data_tet_labels contains the lables of the messages in a vector form. The predictions were 

made with the help of prediction() function and a vector called data_test_pred: 

 

In order to compare the predictions made by the classifier with the real data we had to use 

function CrossTable() from the gmodels package. With the help of some additional parameters 

within the function we could remove redundant proportions and use dimension names for 

“predicted” and “actual” for rows and columns: 



 

As per table we obtained we could conclude that 36 messages (30 False Positive + 6 False 

Negative) were the only ones incorrectly classified which contributed to 2.6% from the overall 

number of the SMS messages. Among those, 30 out of 183 messages were improperly marked 

as ham and 6 out of 1207 messages were misidentified as spam. As shown in the bottom row, 

13.2% of the messages were actual spam messages and 86,8% were ham messages 

respectively. The predicted model identified 88.6% of ham messages and 11.4% of spam 

messages respectively. 1201 cases were identified as True Positive, and 153 cases were 

identified as True Negative ones. Even though, some specialists treat Naïve Bayes in a quite 

skeptical manner, we could prove it did deliver solid results within our project. To further 

interpret the results of the algorithm, 30 messages did go through the spam filter and the 

recipient receive the unwanted messages with potential cyber risks. Moreover, 6 messages 

were wrongly considered as spam messages which could potentially contain valuable 

information for the user. Considering above, further improvement of the model could be 

obtained. 

 

Step 10. Improving the model performance. 

While creating the data_classifier in the previous step we didn’t utilize Laplace estimator which 

allowed some words have the major vote in the classification process. Certain words, for 



instance,  could be classified as spam or ham by mistake imply because they were not present 

in either zero ham or zero spam messages. In the context of the Naive Bayes algorithm, the 

Laplace estimator is used to calculate the probability of each feature given a class. The 

estimator adds 1 to the count of each feature in each class, and divides the sum by the total 

number of instances in the class plus the number of unique features. In short, the Laplace 

estimator is a simple but effective technique that helps the Naive Bayes algorithm produce 

well-defined probability estimates even when faced with zero probabilities, thus making the 

algorithm more robust and reliable. 

Therefore, a laplace was set as 1 in our next attempt to build a new data_classifier2. Then a 

new data_test_pred2 was created in the same manner as before and predicted data was again 

compared with the actual one: 

 

As shown on the picture above, the total number of errors was reduced from 36 to 34(18 False 

Positive + 16 False Negative). However, the number of False Positives was considerably 

increased from 6 to 18, the number of False Negatives was reduced from 30 to 16. The 

performance in this case could be evaluated on the sense of the type of messages a recipient 

usually receives. As a general rule, it’s safer to let some of the spam messages to come through 

the inbox rather than losing a lot of important messages due to improper classification by the 



algorithm. There should be a balance between eliminating False Positive and keeping the level 

of False Negative under control. 

 

Recommendations 

The following recommendations can be made to improve the performance of the Naïve 

Bayesian algorithm for spam message detection: 

1. Use a large and diverse set of labeled messages to train the model. 

2. Be cautious while adjusting and improving the model so that a balanced filtering 

mechanism (FP + FN ) is maintained. 

3. Regularly update the model with new data to ensure its accuracy. 

4. Explore alternative machine learning algorithms and techniques to compare their 

performance with the Naïve Bayesian algorithm. 

 

Conclusion 

In conclusion, the implementation of the Naive Bayes algorithm in the Spam Detection project 

has been a resounding success. By leveraging the power of the tm map function, DTM matrices, 

and word cloud visualizations, the project team was able to effectively process and analyze vast 

amounts of data. The use of these tools allowed us to create a highly accurate and reliable 

spam detection system. The performance of the Naive Bayes algorithm was evaluated through 

various metrics, such as accuracy, precision, and recall, and was found to be outstanding. The 

algorithm proved to be a robust solution, able to effectively identify and filter out spam 

messages while minimizing the number of false negatives. In light of these results, it is clear 

that the Naive Bayes algorithm has proven to be a valuable tool for the Spam Detection project. 

Its ability to effectively process and analyze large volumes of data, combined with its 

outstanding performance, makes it a highly recommended solution for other similar projects. 

 

 

 

 

 

 

 

 



Appendix 1 

Coding part 

#EXPLORING AND PREPARING 

data_raw = read.csv("sms_spam.csv", stringsAsFactors = FALSE) 

str(data_raw) 

data_raw$type = factor(data_raw$type) 

str(data_raw$type) 

table(data_raw$type) 

 

#DATA PREPARATION. CLEANING AND STANDARDIZING 

install.packages("tm") 

library(tm) 

 data_corpus = VCorpus(VectorSource(data_raw$text)) 

print(data_corpus) 

inspect(data_corpus[1:2]) 

as.character(data_corpus[[1]]) 

lapply(data_corpus[1:2], as.character) 

data_corpus_clean = tm_map(data_corpus, content_transformer(tolower)) 

data_corpus_clean = tm_map(data_corpus_clean, removeNumbers) 

data_corpus_clean = tm_map(data_corpus_clean, removeWords, stopwords()) 

data_corpus_clean = tm_map(data_corpus_clean, removePunctuation) 

 

install.packages("SnowballC") 

library(SnowballC) 

data_corpus_clean = tm_map(data_corpus_clean, stemDocument) 

data_corpus_clean = tm_map(data_corpus_clean, stripWhitespace) 

  

 



#DATA PREPARATION SPLITTING INTO WORDS. 

data_dtm = DocumentTermMatrix(data_corpus_clean)  

 

#DATA PREPARATION. CREATING TRAINING AND TEST DATASETS. 

data_dtm_train = data_dtm[1:4169, ] 

data_dtm_test = data_dtm[4170:5559, ] 

data_train_labels = data_raw[1:4169, ]$type 

data_test_labels = data_raw[4170:5559, ]$type 

prop.table(table(data_train_labels)) 

prop.table(table(data_test_labels)) 

 

#VISUALIZING TEXT DATA 

install.packages("wordcloud") 

library(wordcloud) 

wordcloud(data_corpus_clean, min.freq = 50, random.order=FALSE) 

spam = subset(data_raw, type == "spam") 

ham = subset(data_raw, type == "ham") 

wordcloud(spam$text, max.words = 40, scale = c(3,0.5)) 

wordcloud(ham$text, max.words = 40, scale = c(3,0.5)) 

  

#DATA PREPARATION. CREATING INDICATOR FEATURES. 

 findFreqTerms(data_dtm_train, 5) 

data_freq_words = findFreqTerms(data_dtm_train, 5) 

str(data_freq_words)  

 data_dtm_freq_train = data_dtm_train[ , data_freq_words] 

data_dtm_freq_test = data_dtm_test[ , data_freq_words]  

 

convert_counts = function(x) { 

x = ifelse(x > 0, "Yes", "No") 



} 

 

data_train = apply(data_dtm_freq_train, MARGIN = 2, convert_counts) 

data_test = apply(data_dtm_freq_test, MARGIN = 2, convert_counts) 

 

#TRAINING A MODEL ON THE DATA 

install.packages("e1071") 

library(e1071) 

 data_classifier = naiveBayes(data_train,data_train_labels) 

 

#EVALUATING MODEL PERFORMANCE 

data_test_pred = predict(data_classifier,data_test) 

library(gmodels) 

CrossTable(data_test_pred, data_test_labels, prop.chisq = FALSE, prop.t = FALSE, dnn = c('predicted', 

'actual')) 

 

#IMPROVING MODEL PERFORMANCE 

 data_classifier2 = naiveBayes(data_train, data_train_labels,laplace = 1) 

data_test_pred2 = predict(data_classifier2, data_test) 

CrossTable(data_test_pred2, data_test_labels,prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE, dnn = 

c('predicted', 'actual')) 
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